object. — summary.mtree" />

Reports some summary statistics for a mutation tree.

# S3 method for mtree
summary(x, ...)

Arguments

x

An mtree tree.

...

Extra parameters

Value

None.

Examples

data(mtree_input) x = mtrees( mtree_input$binary_clusters, mtree_input$drivers, mtree_input$samples, mtree_input$patient, mtree_input$sspace.cutoff, mtree_input$n.sampling, mtree_input$store.max )
#> [ mtree ~ generate mutation trees for PD9193 ] #> Sampler : 10000 (cutoff), 5000 (sampling), 100 (max store) #> Suppes' conditions : >= #> # A tibble: 4 x 14 #> Misc patientID cluster is.driver is.clonal PD9193d PD9193e PD9193f PD9193g #> <chr> <chr> <chr> <lgl> <lgl> <dbl> <dbl> <dbl> <dbl> #> 1 cuto… PD9193 2 FALSE FALSE 1 1 1 0 #> 2 cuto… PD9193 3 TRUE FALSE 1 0 0 0 #> 3 cuto… PD9193 1 TRUE TRUE 1 1 1 1 #> 4 cuto… PD9193 4 TRUE FALSE 1 0 1 1 #> # … with 5 more variables: PD9193h <dbl>, PD9193i <dbl>, PD9193j <dbl>, #> # PD9193k <dbl>, nMuts <dbl> #> #> Structures 3 - search is exahustive #> Trees with non-zero sscore 3 storing 3 #>
summary(x[[1]])
#> Length Class Mode #> adj_mat 25 -none- numeric #> tb_adj_mat 10 tbl_graph list #> score 1 -none- numeric #> patient 1 -none- character #> samples 8 -none- character #> drivers 15 tbl_df list #> CCF 14 tbl_df list #> binary 1 -none- logical #> transfer 2 -none- list #> annotation 1 -none- character #> tree_type 1 -none- character #> evaluation 1 -none- character #> binary_data 14 tbl_df list #> Suppes 3 -none- list